The correct option is D 512
Given, (1+x+x2+x3)5=15∑k=0akxk
⇒[(1+x)+x(1+x)]5=15∑k=0akxk
⇒(1+x)10=a0x0+a1x+a2x2+⋯+a15x15
⇒10C0+10C1x+10C2x2+⋯+10C10x10
=a0+a1x+a2x2+a3x3+⋯+a15x15
On equating the coefficient of constant and even powers of x, we get
a0=10C0,a2=10C2,
a4=10C4,…,a10=10C10,
a12=a14=0
∴7∑k=0a2k=10C0+10C2+10C4+10C6+10C8+10C10+0+0
=210−1=29
=512