The correct option is D All of these
(2+z)6+(2−z)6=0&w=2+z2−z
⇒(2+z2−z)6=−1⇒w6=−1
∴w=(−1)16
∵2+z2−z=w⇒2(w−1)=z(w+1)
∴z=2(w−1)w+1
∵w=(−1)16
w=(cosπ+isinπ)16=cos(2pπ+π6)+isin(2pπ+π6) ..{De Moivre's Theorem}
Wherep=0,1,2,3,4,5.
⇒w=ei(2p+1)π6
Hence, option 'D' is correct.