If (7+4√3)n=s+t, where n and s are positive integers and t is a proper fraction, then value of (1−t)(s+t) is
Since t is a proper fraction ∴0<t<1 given (7+4√3)n=s+t
Now, let t′=(7−4√3)n,0<t′<1
Also s+t+t′=(7+4√3)n+(7−4√3)n=2{7n+nC2(7)n−2(4√3)2+nC4(7)n−4(4√3)4+...}=2(Integer)=2k(k∈N)=Even integer
Hence t+t′=Even
integer−s, but 0<t+t′<2
∴ R.H.S is integer, hence L.H.S is also integer. Therefore t+t′=1
∴t′=(1−t)
Hence (1−t)(s+t)=t′(s+t)=[(7−4√3)(7+4√3)]n=1