(a2−b2)sinθ+2abcosθ=a2+b2(dividingbycosθ)
= (a2−b2)sinθcosθ+2abcosθcosθ=a2+b2cosθ
= (a2−b2)tanθ+2ab=(a2+b2)secθ
= squaring both side we get
= (a2−b2)2tan2θ+4a2b2+4ab(a2−b2)tanθ=(a2+b2)2sec2θ
= (a2−b2)2tan2θ+4a2b2+4ab(a2−b2)tanθ=(a2+b2)2(1+tan2θ)
= [(a2−b2)2−(a2+b2)2]tan2θ+4a2b2+4ab(a2−b2)tanθ−(a2+b2)2=0
= [(a2−b2+a2+b2)(a2−b2−a2−b2)]tan2θ+4ab(a2−b2)tanθ+4a2b2−(a4+b4+2a2b2)=0
−4a2b2tan2θ+4ab(a2−b2)tanθ+2a2b2−a4−b4=0
+tan2θ−(a2−b2ab)tanθ−12+a24b2+b24a2=0
tan2θ+(b2−a2ab)tanθ−12+a24b2+b24a2=0
puttanθ=u,then
u2+(b2−a2ab)u−12+a24b2+b24a2=0
u=−(b2−a2ab)±√(b2−a2ab)2−4(a24b2+b24a2−12)2
=a2−b2ab±√4(b2−a2)2−4(a4+b4)−2a2b24a2b22
=a2−b2ab±√4b4+4a4−8a2b2−4a4−4b4+8a2b24a2b22
tanθ=a2−b22ab