wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a-52+b-c2+c-d2+b+c+d-92=0, then the value of a+b+cb+c+d is:


  1. 0

  2. 11

  3. 33

  4. 99

Open in App
Solution

The correct option is D

99


Solution:

Step 1: The sum of all the squares is zero, so they all have to be zero:

Given:

a-52+b-c2+c-d2+b+c+d-92=0.

a2+b2=0Itmeansa=b=0

Thus we can write the given equation as,

.a-5=0ora=5...(i)b-c=0orb=c...(ii)c-d=0orc=d...(iii)b+c+d-9=0...(iv)

Step 2: Solve for the values of b,c,d.

b=c=d...(v)[Fromequation(ii)and(iii).]So,byusingequation(v)and(iv),weget,3b=9[b+c+d-9=0]b=3

Now we have the values a=5,b=3,c=3andd=3.

Step 3: Finding the value of (a+b+c)(b+c+d)

By putting the values of a=5,b=3,c=3andd=3 we get,

=(a+b+c)(b+c+d)=(5+3+3)(3+3+3)=(11)(9)=99.

Final answer: Hence, correct answer is option (D).


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Progress in Mathematics
HISTORY
Watch in App
Join BYJU'S Learning Program
CrossIcon