wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (a+b+c+d)(abc+d)=(a+bcd)(ab+cd),
prove that a:b=c:d

Open in App
Solution

prove that a:b=c:d
Given:(a+b+c+d)(abc+d)=(a+bcd)(ab+cd),

Concept of componendo and dividendo to be use
If ab=cd then a+bab=c+dcd

Now, (a+b+c+d)(a+bcd)=(ab+cd)(abc+d)

(a+b+c+d)+(a+bcd)(a+b+c+d)(a+bcd)=(ab+cd)+(abc+d)(ab+cd)(abc+d)

2a+2b2c+2d=2a2b2c2d

a+bc+d=abcd

a+bab=c+dcd

a+b+aba+ba+b=c+d+cdc+dc+d

[By using componendo and dividendo]
2a2b=2c2d

a:b=c:d

Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon