prove that a:b=c:d
Given:(a+b+c+d)(a−b−c+d)=(a+b−c−d)(a−b+c−d),
Concept of componendo and dividendo to be use
If ab=cd then a+ba−b=c+dc−d
Now, (a+b+c+d)(a+b−c−d)=(a−b+c−d)(a−b−c+d)
⇒(a+b+c+d)+(a+b−c−d)(a+b+c+d)−(a+b−c−d)=(a−b+c−d)+(a−b−c+d)(a−b+c−d)−(a−b−c+d)
⇒2a+2b2c+2d=2a−2b2c−2d
⇒a+bc+d=a−bc−d
⇒a+ba−b=c+dc−d
⇒a+b+a−ba+b−a+b=c+d+c−dc+d−c+d
[By using componendo and dividendo]
⇒2a2b=2c2d
⇒a:b=c:d
Hence, proved.