wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (a1a)=7; find the value of (a2+1a2),(a21a2) and (a31a3).

Open in App
Solution

Step 1: Find the value of (a2+1a2)
Given Expression is (a1a)=7 .....(1)
Now, find the square of (a1a) by using the formula
(ab)2=a22ab+b2

(a1a)2=a2+1a22(a)(1a)

a2+1a2=(a1a)2+2

a2+1a2=72+2

a2+1a2=49+2

a2+1a2=51 ....(2)

Step 2: Find the value of (a21a2)
Now, find the value of(a+1a) by using the formula (a+b)2=(ab)2+4ab

(a+1a)2=(a1a)2+4(a)(1a)

(a+1a)2=(a1a)2+4

(a+1a)2=49+4=53

a+1a=±53 .....(3)

Now, multiply equation (1) and (3),

(a1a)(a+1a)=±753

(a21a2)=±753

Step 3: Find the value of (a31a3).
Now, the find the cube of (a1a) by using the formula
(ab)3=a3b33ab(ab)

(a1a)3=(a3)(1a)33(a)(1a)(a1a)

(7)3=a31a33(7)

a31a3=343+21=364

Hence, the value (a2+1a2),(a21a2) and (a31a3) are 51,±753 and 364.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon