Step 1: Find the value of (a2+1a2)
Given Expression is (a−1a)=7 .....(1)
Now, find the square of (a−1a) by using the formula
(a−b)2=a2−2ab+b2
⇒(a−1a)2=a2+1a2−2(a)(1a)
⇒a2+1a2=(a−1a)2+2
⇒a2+1a2=72+2
⇒a2+1a2=49+2
∴a2+1a2=51 ....(2)
Step 2: Find the value of (a2−1a2)
Now, find the value of(a+1a) by using the formula (a+b)2=(a−b)2+4ab
⇒(a+1a)2=(a−1a)2+4(a)(1a)
⇒(a+1a)2=(a−1a)2+4
⇒(a+1a)2=49+4=53
∴a+1a=±√53 .....(3)
Now, multiply equation (1) and (3),
(a−1a)(a+1a)=±7√53
∴(a2−1a2)=±7√53
Step 3: Find the value of (a3−1a3).
Now, the find the cube of (a−1a) by using the formula
(a−b)3=a3−b3−3ab(a−b)
⇒(a−1a)3=(a3)−(1a)3−3(a)(1a)(a−1a)
⇒(7)3=a3−1a3−3(7)
∴a3−1a3=343+21=364
Hence, the value (a2+1a2),(a2−1a2) and (a3−1a3) are 51,±7√53 and 364.