If (asecθ,btanθ) and (asecϕ,btanϕ) be the coordinates of the ends of a focal chord of the hyperbola x2a2−y2b2=1, then tanθ2tanϕ2=
If (a secθ.b tanθ) and (a secΦ,b tan Φ) are the ends of a focal chord of the hyperbola x2a2 − y2b2 = 1 whose eccentricity is e,then tan θ2 × tan⊘2 equal to.
If the eccentricities of the hyperbolas x2a2−y2b2=1 and y2b2−x2a2=1 be e and e1, then 1e2+1e21=