The correct option is A b2+(a−c)2
a sin2 θ+b sin θ cos θ+c cos2 θ−12(a+c)=12[−acos 2θ+b sin 2θ+c cos 2θ]=12[b sin 2 θ−(a−c)cos 2 θ]∵|b sin 2 θ−(a−c)cos 2 θ|≤√b2+(a−c)2∴∣∣12{b sin 2θ−(a−c)cos 2 θ}∣∣≤12√b2+(a−c)2⇒∣∣a sin2 θ+b sin θ cos θ+c cos2 θ−12(a+c)∣∣≤12√b2+(a−c)2