If ∣∣
∣∣x+22x+33x+42x+33x+44x+53x+55x+810x+17∣∣
∣∣=0 then x is equal to
The correct option is C (−1,−2)
∣∣
∣∣x+22x+33x+42x+33x+44x+53x+55x+810x+17∣∣
∣∣=0
From R2→R2−2R1,R3→R3−3R1
⇒∣∣
∣
∣∣x+22x+33x+4−1−(x+2)−2x−3−1−(x+1)x+5∣∣
∣
∣∣=0
From R1→R1+R2
⇒∣∣
∣
∣∣x+1x+1x+1−1−(x+2)−(2x+3)−1−(x+1)x+5∣∣
∣
∣∣=0
Takin (x+1) as a common from first row and also taking −1 as a common from both second and third row's.
⇒(x+1)∣∣
∣∣1111x+22x+31x+1−(x+5)∣∣
∣∣=0
R2→R2−R1
⇒(x+1)∣∣
∣
∣∣1110(x+1)2(x+1)1x+1−(x+5)∣∣
∣
∣∣=0
Again taking (x+1) as a common from second row .
⇒(x+1)2∣∣
∣∣1110121x+1−(x+5)∣∣
∣∣=0
R3→R3−R1
⇒(x+1)2∣∣
∣∣1110120x−(x+6)∣∣
∣∣=0
Expand determinant along first column, we get
⇒(x+1)2[−x−6−2x]=0
⇒(x+1)2(−3x−6)=0
⇒(x+1)2=0 and −3x−6=0
⇒x+1=0 and −3x=6
⇒x=−1 and x=6−3
∴x=−1,−2