If (cos2x+1cos2x)(1+tan22y)(3+sin3z)=4,then
minvalueof(cos2x+(1cos2x))=2minvalueof1+tan22y=1andminvalueof3+sin3z=3−1=2Hencexmaybeamultipleofπbecauseminimumvaluewilloccuronlywhencos2x=(1cos2x)=1ycanbemultipleof(π2)suchthattan(2y)=0