wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (cotθ+tanθ)=m and (secθcosθ)=n, prove that (m2n)2/3(mn2)2/3=1.

Open in App
Solution

cotθ+tanθ=m

=1+tan2θtanθ=sec2θtanθ=1cos2θ×cosθsinθ

=1sinθcosθ=m

secθcosθ=1cos2θcosθ=sin2θcosθ=n

m2=1sin2θcos2θ,n2=sin4θcos2θ

m2n=1sin2θcos2θ×sin2θcosθ=1cos3θ=sec3θ

n2m=sin4θcos2θ×1sinθcosθ=tan3θ

(m2n)2/3(mn2)2/3

=(sec3θ)2/3(tan3θ)2/3

=sec2θtan2θ=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon