If ⎡⎢⎣1∫0dtt2+2tcosα+1⎤⎥⎦x2−⎡⎢⎣3∫−3t2sin2tt2+1dt⎤⎥⎦x−2=0,(0<α<π), then the value of x is
A
±√α2sinα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
±√2sinαα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
±√αsinα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
±2√sinαα
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D±2√sinαα ⎡⎢⎣1∫0dtt2+2tcosα+1⎤⎥⎦x2−⎡⎢⎣3∫−3t2sin2tt2+1dt⎤⎥⎦x−2=0
We know, a∫−af(x)dx=0 if f(x)+f(−x)=0
Let, I=1∫0dtt2+2tcosα+1⇒I=1∫0dt(t+cosα)2+sin2α⇒I=1sinα[tan−1(t+cosαsinα)]10⇒I=1sinα[tan−1cotα2−tan−1cotα]⇒I=1sinα[tan−1tan(π2−α2)−tan−1tan(π2−α)]⇒I=1sinα[(π2−α2)−(π2−α)]∴I=α2sinα
From the equation, we get I⋅x2−2=0⇒x2=4sinαα∴x=±2√sinαα