The correct option is D π∫−π(cosx)f(x)dx=0
(f(x)−1)(x2+x+1)2−(f(x)+1)(x4+x2+1)=0
⇒(f(x)−1)(x2+x+1)2=(f(x)+1)(x4+x2+1)
⇒f(x)−1f(x)+1=x4+x2+1(x2+x+1)2
⇒f(x)−1f(x)+1=x2−x+1x2+x+1
Using componendo and dividendo,
f(x)=x2+1x=x+1x, x≠0
⇒∣∣∣x+1x∣∣∣≥2
Now, f′(x)=1−1x2=x2−1x2=0
Critical points are x=±1
and f′′(x)=2x3
⇒f(x) has local maximum at x=−1
and local minimum at x=1
Since f(−x)=−f(x), so f(x) is odd.
⇒π∫−π(cosx)f(x)dx=0