If [1+i1−i]m=1, then find the least positive integral value of m.
Here 1+i1−i,=1+i1−i×1+i1+i=(1+i)21−i2
=1+i2+2i1+1=1−1+2i2=2i2=i
∴ [1+i1−i]m=(i)m=1
∴ (i)m=1=(i)4
∴ m=4
If (1+i1−i)m = 1 then the least integral value of m is