If (xm×xnxp)q=xK then what is the value of K?
(m + n + q)
(m + n - p)q
(m + n) (n + q)
(pq) (mn)
(xm×xnxp)q=xK ⇒(xm+nxp)q=xk [Using am×an=am+n] ⇒(xm+n−p)q=xk [Using (am)n=amn]
Since bases are equal exponents should also be equal ⇒K=(m+n−p)q
The coefficient of xm in (1+x)k+(1+x)k+1+..............+(1+x)n,(k≤m≤n), is given by: