If a2+b23=a3+b32, then ab+ba=
23
32
56
65
Solution:
Expanding and simplifying given equation:
Given: a2+b23=a3+b32
⇒a2+b23=a3+b32⇒a6+b6+3a4b2+3a2b4=a3+b32[∵(a+b)3=a3+b3+3a2b+3ab2]⇒a6+b6+3a4b2+3a2b4=a6+b6+2a3b3[∵(a+b)2=a2+b2+2ab]⇒3a4b2+3a2b4=2a3b3
⇒3ab+3ba=2(dividetheequationbya3b3)⇒3ab+ba=2⇒ab+ba=23
Final answer: Hence, option(A) is correct.