If |→a|=10,∣∣→b∣∣=2 and →a.→b=12, then the value of ∣∣→a×→b∣∣=
5
10
14
16
(¯a.→b)2+∣∣¯a×→b∣∣=|¯a|2∣∣→b∣∣2⇒144+∣∣¯a×→b∣∣=100×4∣∣¯a×→b∣∣2=256∣∣¯a×→b∣∣=16
If →a=10,→b=2 and →a.→b=12,then the value of |→a×→b| is
(a) 5 (b) 10 (c) 14 (d) 16
Nonzero vectors →a,→b,→c satisfy →a.→b =0, (→b−→a).(→b+→c) = 0 and 2 |→b+→c|=|→b−→a|.
If = →a=μ→b+4→c then μ = ______