wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (a2b2)sinx2abcosx=a2+b2;then tanx=?


A

(a2 + b2)/2ab

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

(a2 - b2)/2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

(a2 - b2)/2ab

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

(a2 + b2)/2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
E

(a2 + b2)/ab

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

(a2 - b2)/2ab


(a2b2)sinx2abcosx=a2+b2a2sinxb2sinx2abcosx=a2+b2a2sinxb2sinx2abcosxa2b2=0a2(1sinx)+b2(1+sinx)+2abcosx=0[(a1sinx)]2+[b(1+sinx)]2+2abcosx=0[(a1sinx)]2+[b(1+sinx)]2+2abcos2x=0[(a1sinx)]2+[b(1+sinx)]2+2ab(1sin2x)=0[(a1sinx)]2+[b(1+sinx)]2+2ab(1+sinx)(1sinx)=0[(a1sinx)+b(1+sinx)]2=0a1sinx=b1+sinx(a2+b2)sinx=a2b2sinx=(a2b2)/(a2+b2)cosx=2ab/(a2+b2)[cosx=root{1sin2x}]tanx=(a2b2)/(2ab)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon