If (sinθ1+icosθ1)(sinθ2+icosθ2)...(sinθn+icosθn)=a+ib, then a2+b2=(Given a and b are real numbers)
A
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1 We know that sinθ+icosθ =ei(π2−θ) =eiπ2.e−iθ...(i) Hence (sinθ1+icosθ1)(sinθ2+icosθ2)(sinθ3+icosθ3)...(sinθn+icosθn) =ei(π2−θ1).ei(π2−θ2).ei(π2−θ3)...ei(π2−θn) =ei(n(π2)−(θ1+θ2+...θn)) =ei((nπ2)−(θ1+θ2+...θn)) =cos((nπ2)−(θ1+θ2+...θn))+isin((nπ2)−(θ1+θ2+...θn)) =cos(nπ2−∑θi)+isin(nπ2−∑θi)) Hence a+ib=cos(nπ2−∑θi)+isin(nπ2−∑θi)) a=cos(nπ2−∑θi) and b=sin(nπ2−∑θi) Hence a2+b2=1