If (tan−1x)2+(cot−1x)2=5π28, then x equal to
Consider the given equation.
(tan−1x)2+(cot−1x)2=5π28
Since, cot−1x=π2−tan−1x
Therefore,
(tan−1x)2+(π2−tan−1x)2=5π28 ……. (1)
Let t=tan−1x
From equation (1),
t2+(π2−t)2=5π28
t2+π24+t2−πt=5π28
2t2−πt=5π28−π24
2t2−πt=3π28
t2−π2t−3π216=0
t=π2±√π24−4×1×−3π2162
t=π2±√π24+3π242
t=π2±√4π242
t=π2±π2
t=−π4,3π4
Therefore,
tan−1x=t
x=tan(−π4)⇒−1
x=tan(3π4)⇒−1
Hence, the value of x is −1.