wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (tan1x)y+ycotx, then find dydx

Open in App
Solution

Let u=(tan1x)y and v=ycotx

logu=ylog(tan1x) and logv=cotxlogy

or 1ududx=ytan1x11+x2+logtan1xdydx

dudx=(tan1x)y[ytan1x(1+x2)+logtan1xdydx]

1vdvdx=cotxydydxcsc2xlogy

or dvdx=ycotx[cotxydydxcsc2xlogy]

Given:u+v=0

dudx+dvdx=0

y(tan1x)y11+x2+(tan1x)ylogtan1xdydx+cotx.ycotx1dydxycotxcsc2xlogy=0

dydx=ycotxcsc2xlogyy(tan1x)y11+x2(tan1x)ylogtan1x+cotx.ycotx1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon