The correct option is A 2
2a0−a1−a2+2a3−a4−a5+2a6−...
Here, 1st, 4th, 7th and so on terms have same coefficient.
2nd, 5th, 8th and so on terms have same coefficient.
3rd, 6th, 9th and so on terms have same coefficient.
If x=ω, where ω is cube root of unity
(ω2006+1ω2006+2)2010=a0+a1ω+a2ω2+...+anωn
⇒(ω2+ω+1+1)2010=a0+a1ω+a2ω2+...+anωn
Since, 1+ω+ω2=0
⇒ 1=a0+a1ω+a2ω2+...+anωn ...(1)
If x=ω2
(ω4012+1ω4012+2)2010=a0+a1ω2+a2ω4+...+anω2n
⇒(ω+ω2+1+1)2010=a0+a1ω2+a2ω4+...+anω2n
⇒ 1=a0+a1ω2+a2ω4+...+anω2n ....(2)
(1)+(2), we get
2=2a0+a1(ω+ω2)+a2(ω2+ω4)+a3(ω3+ω6)+...+an(ωn+ω2n)
⇒ 2=2a0−a1−a2+2a3−a4−a5+2a6−...
∴ solution is 2