(x+1x)2=3x2+1x2+2=3x4+x2+1=0t=x2t2−t+1=0t=1±i√32t=w;x=±√wx6=w3=1x206+x200+x90+x84+x18+x12+x6+1x2×x6×34+x2×x6×33+x15×6+x14×6+x3×6+x6×2+x6+1x2+x2+1+1+1+1+1+1w−w+66