(x+1x)2=3
∴x2+2+1x2=3⇒x2+1x2=1
∴x2+1=x2
∴x4−x2=−1
∴x4−x2+1=0
Multiply throughout by (x2+1) we get,
(x2+1)(x4−x2+1)=0
∴x2+1=0 ------(1)
We have to find value of x206+x200+x90+x84+x18+x12+x6+1
=x200(x6+1)+x90(x6+1)+x12(x6+1)+1(x6+1)
=(x6+1)(x200+x90+x12+1)
But x6+1=0
x206+x200+x90+x84+x18+x12+x6+1=0(x200+x90+x12+1)
∴x206+x200+x90+x84+x18+x12+x6+1=0