If (x+1x)=4, find the value of
(1) (x3+1x3)
(2) (x−1x)
(3) (x3−1x3)
Given:
(x+1x)=4
⇒(x+1x)2=42 [∵(a+b)2=a2+b2+2ab]
⇒x2+1x2+2x2 1x2=16
⇒x2+1x2=14
(1)
(x3+1x3)=(x+1x)(x2+1x2+x2×1x2)
=(4)(14+1)
=60
∴(x3+1x3)=60.
(2)
(x+1x)=4
⇒(x−1x)2=(x+1x)2−4
⇒(x−1x)2=42−4
⇒(x−1x)2=16−4 [∵x+1x=4]
⇒(x−1x)2=12
⇒(x−1x)=±2√3
(3)
(x3−1x3)=(x−1x)(x2+1x2+1)
=2√3(2−1) [∵x−1x=2√3]
=2√3