If (x−1x)=5, find the values of
(i) (x2+1x2) and
(ii) (x4+1x4)
x−1x=5
(i) Squaring both sides
(x−1x)=(5)2
⇒x2+1x2−2×x×1x=25
⇒x2+1x2−2=25
⇒x2+1x2=25+2=27
∴x2+1x2=27
(ii) Again squaring both sides:
(x2+1x2)2=(27)2
⇒x4+1x4+2×x2×1x2=729
⇒x4+1x4+2=729
⇒x4+1x4=729−2=727
∴x4+x4+1x4=727