If [x] denotes greatest integer function then, ∫1110[x2]dx[x2−42x+441]−[x2]equals
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
212
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−12 I=∫1110[x2]dx[x2−42x+441]−[x2]=∫1110[x2]dx[(x−21)2]−[x2] Using ∫baf(x)dx=∫baf(a+b−x)dx I=∫1110[(21−x)2]dx[x2]−[(21−x)2] ∴2I=∫1110dx=−1⇒I=−12