wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the absolute value of 8z3z2+27z3z1+64z1z2 equals

A
24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
48
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
72
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
96
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 96
Given |z1|=2,|z2|=3,|z3|=4,|2z1+3z2+4z3|=4
|8z3z2+27z3z1+64z1z2|=(z1z2z3)(8z1+27z2+64z3)
=|z1z2z3|8z1+27z2+64z3
=|z1z2z3|8¯z1z1¯z1+27¯z2z2¯z2+64¯z3z3¯z3
=|z1||z2||z3|∣ ∣8¯z1|z1|2+27¯z2|z2|2+64¯z3|z3|2∣ ∣
[z1¯z1=|z1|2]
=2.3.48¯z14+27¯z29+64¯z316
=24|2¯z1+3¯z2+4¯z3|
=24|¯2z1+3z2+4z3|
[¯z1+z2=¯z1+¯z2]
=24|2z1+3z2+4z3| [|z|=|¯z|]
=24.4
=96.

1188471_1315916_ans_6428c5b432734b3ca73d21a95764d5c6.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon