wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If |z1|=|z2|=|z3|=1 and z1+z2+z3+=2+i, then the complex number z2¯¯¯¯¯z3+z3+¯¯¯¯¯z1+z1+¯¯¯¯¯z2 is

A
Purely imaginary
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Purely real
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Positive real number
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B Purely imaginary
|z1|=|z2|=|z3|=1
z1+z2+z3=3+i
To find z2¯z3+z3+¯z1+z1+¯z2
|(z1+z2+z3)|2=(3+i)2
(z1+z2+z3)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2+z3)=(3+i)2
(z1+z2+z3)(¯z1+¯z2+¯z3)=(3+i)2
z1¯z1+z1¯z2+z1¯z3+z2¯z1+z2¯z2+z2¯z3+¯z1z3+z3¯z2+z3¯z3
=3+(i)2+i23
[z1¯z1=|z1|2]=|z1|2+|z2|2+|z3|2+z1¯z2+z1¯z3+z2¯z1=2+2i3
+z2¯z3+¯z1z3+z3¯z2
3+z3(¯z2+¯z2)+z1¯z2+z1¯z3+z2¯z1+z2¯z3=2+3i3
z3¯z2+z3¯z1+z1¯z2+z1¯z3+z2¯z1+z2¯z3=1+2i3
Error !

1168909_1139675_ans_1da850102c8c4cb1920dbbb87ae1deee.jpeg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon