$\left| z \right| =\left| z+\dfrac { 2 }{ z } -\dfrac { 2 }{
z } \right| =\left| z+\dfrac { 2 }{ z } +\left( -\dfrac { 2 }{ z
} \right) \right| \le \left| z+\dfrac { 2 }{ z } \right| +
\left| -\dfrac { 2 }{ z } \right| =2+\left| \dfrac { 2 }{ z }
\right|$
$\therefore \left| z \right| \le 2+\dfrac { 2 }{ \left| z
\right| }.Put\left| z \right|=t$
t2−2t−2≤0
∴(t−a)(t−b)≤0 where a and b are roots of
t2−2t−2=0,a<b
∴a=1−√3,b=1+√3,a≤t≤b
or $\left( 1-\sqrt { 3 } \right) \le \left| z \right| \le 1+\sqrt
{ 3 }$
Hence the max. value of |z| is 1+√3.