wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z+2z=2, then prove that the maximum value of |z| is 3+1.

Open in App
Solution

$\left| z \right| =\left| z+\dfrac { 2 }{ z } -\dfrac { 2 }{
z } \right| =\left| z+\dfrac { 2 }{ z } +\left( -\dfrac { 2 }{ z
} \right) \right| \le \left| z+\dfrac { 2 }{ z } \right| +
\left| -\dfrac { 2 }{ z } \right| =2+\left| \dfrac { 2 }{ z }
\right|$
$\therefore \left| z \right| \le 2+\dfrac { 2 }{ \left| z
\right| }.Put\left| z \right|=t$
t22t20
(ta)(tb)0 where a and b are roots of
t22t2=0,a<b
a=13,b=1+3,atb
or $\left( 1-\sqrt { 3 } \right) \le \left| z \right| \le 1+\sqrt
{ 3 }$
Hence the max. value of |z| is 1+3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon