If |z|=1 prove that 1+z1+z=z.
Given, |z|=1 ⇒ |z|2=1⇒z¯¯¯z=1
Now, 1+z1+¯z=z ¯z+z1+¯z=z(1+¯z)(1+¯z)=z [∵ z¯¯¯z=1]
1+¯¯¯z