If |z|≤1,|w|≤1 show that |z−w|2≤(|z|−|w|)2=(Argz−Argw)2
Open in App
Solution
Let z=reiθ, w=Reiϕ∴r≤1, R≤1, Argz=θ,Argw=ϕ |z−w|2=r2+R2−2rRcos(θ−ϕ) r2+R2−2rR+2rR[1−cos(θ−ϕ)] =(r−R)2+2rR.2sin2{θ−ϕ2} ≤(r−R)2+4.1.1(θ−ϕ2)2 =(|z|−|w|)2+(Argz−Argw)2 R<1, sinψ<ψ where ψ is a +ive angle. Also sin2ψ<ψ2.