Since, the length of tangent =∣∣
∣∣y√1+(dxdy)2∣∣
∣∣=1 ⇒y2(1+(dxdy)2)=1
∴dxdy=y√1−y2
⇒∫√1−y2ydy=±∫xdx⇒∫√1−y2ydy=±x+c
Put y=sinθ ⇒dy=cosθdθ
∴∫cosθsinθ.cosθdθ=±x+c⇒∫cos2θsin2θ.sinθdθ=±x+c
Again put cosθ=t⇒−sinθdθ=dt
∴−∫t21−t2dt=±x+c,
⇒∫(1−11−t2)dt=±x+c⇒t−log∣∣∣1+t1−t∣∣∣=±x+c
⇒√1−y2−log∣∣
∣∣1+√1−y21−√1−y2∣∣
∣∣=±x+c
⇒f(x)=eCex
∵f(0)=0⇒eC=0, a contradiction
∴f(x)=0∀x∈R⇒f(ln5)=0
and f′(x)=f(x)
if f(x)≠0
⇒f′(x)f(x)=1⇒lnf(x)=x+c ⇒f(x)=ecex
∵f(0)=0⇒ec=0, a contradiction
∴f(x)=0∀x∈R⇒f(ln5)=0