If length of tangent at any point on the curve y=f(x) intercepted between the point and the x− axis is of length 1 units, then the equation of the curve is:
A
ln∣∣∣1−√1−x2x∣∣∣+√1−x2=±y+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ln∣∣
∣∣1−√1−y2y∣∣
∣∣+√1−x2=±x+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ln∣∣
∣∣1−√1−y2y∣∣
∣∣+√1−y2=±x+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ln∣∣∣1−√1−x2x∣∣∣+√1−y2=±y+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cln∣∣
∣∣1−√1−y2y∣∣
∣∣+√1−y2=±x+c We know that length of tangent to curve y=f(x) is given by ∣∣
∣
∣
∣
∣
∣∣y√1+(dydx)2(dydx)∣∣
∣
∣
∣
∣
∣∣
As per question ∣∣
∣
∣
∣
∣
∣∣y√1+(dydx)2(dydx)∣∣
∣
∣
∣
∣
∣∣=1 ⇒y2(1+(dydx)2)=(dydx)2 ⇒(dydx)2=y21−y2⇒dydx=±y√1−y2 ⇒∫√1−y2ydy=∫±dx
Put y=sinθ so that dy=cosθdθ ⇒∫cosθsinθcosθdθ=±x+c ⇒∫(cosecθ−sinθ)dθ=±x+c ⇒ln|cosecθ−cotθ|+cosθ=±x+c ⇒ln∣∣
∣∣1−√1−y2y∣∣
∣∣+√1−y2=±x+c