wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If θ lies in the first quadrant and cos θ=817, then prove that:
cos π6+θ+cos π4-θ+cos 2π3-θ=3-12+122317

Open in App
Solution

Given: 0<θ<π2Now, sin θ = 1-cos2θ = 1-64289=1517LHS = cosπ6+θ +cosπ4-θ+cos2π3-θ = cos(30+θ) +cos(45-θ)+cos(120-θ) =cos 30° cos θ -sin30° sin θ +cos 45° cos θ+sin 45° sin θ + cos120° cos θ+sin120° sin θ Using formulas of cos(A+B) and cos(A-B) = cos θ(cos 30°+cos 45°+cos120) +sin θ(-sin 30° +sin 45° +sin120°) = 81732+12-12 +1517-12+12+32 =8173-12+12+15173-12+12 =23173-12+12 = RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon