Let, L=limx→0(x−3sin3x+ax−2+b)
=limx→0sin3x+ax+bx3x3=00 form
=limx→03cos3x+a+3bx23x2 (Using L' Hospital rule)
For existence of limit, (3+a)=0⇒a=−3
Therefore,
limx→03cos3x−3+3bx23x2
=limx→0−9sin3x+6bx6x
=limx→0−27cos3x+6b6 ( Using L' Hospital rule)
But given,
limx→0−27cos3x+6b6=0
⇒−27+6b=0⇒b=92
∴a+2b=−3+2×92=6
Alternate:
limx→0sin3x+ax+bx3x3
limx→03x−(3x)33!+(3x)55!⋯+ax+bx3x3
For limit to exist,
3+a=0⇒a=−3
⇒−276+b=0 (Given: L=0)
⇒b=92
∴a+2b=−3+2×92=6