If limx→a[f(x)+g(x)]=10 and limx→af(x)=2, then find the value of limx→ag(x), provided that limx→af(x) and limx→ag(x) exists ___
If the limits limx→af(x) and limx→ag(x) exist, then limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x)
⇒10=2+limx→ag(x)
⇒limx→ag(x)=8
If both limx→af(x) and limx→ag(x) and exist finitely and limx→ag(x)=0, then limx→af(x)g(x)=limx→af(x)limx→ag(x)
If limx→a[f(x) + g(x)] = 10 and limx→a f(x)=2, then find the value of limx→a g(x), provided the limit
If limx→af(x)=l and limx→ag(x)=m, then limx→a(f(x))g(x)=l m