limx→∞a(2x3−x2)+b(x3−1)−c(3x3+x2)a(5x4−x)−bx4+c(4x4+1)+2x2+5x=1
limx→∞(2a+b−3c)x3+(−a−c)x2−b(5a−b+4c)x4+2x2+(−a+5)x+c=1
For limit to exist and equal to 1,
coefficient of x4 in denominator =0
⇒5a−b+4c=0 ⋯(1)
and coefficient of x3 in numerator =0
⇒2a+b−3c=0 ⋯(2)
and coefficient of x2 in numeratorcoefficient of x2 in denominator=1
⇒−a−c2=1
⇒−a−c=2 ⋯(3)
Solving (1),(2) and (3), we get
a=13,b=−233 and c=−73
⇒a−b−c=313=pq
∴p+q=34