wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If limx01cos2x.3cos3x.4cos4x......ncosnxx2 has the value equal to 14, then the value of n equals

Open in App
Solution

We have,
cosnx=1(nx)22!+(nx)44!........
Now, (cosnx)1n=1nx22!+higer power of x.
cos2x.3cos3x.......ncosnx=1(1+2+3+.....+n)x22+higher power of x
or, 1cos2x.3cos3x.......ncosnx=(1+2+3+.....+n)x22higher power of x
or, 1cos2x.3cos3x.......ncosnxx2=(1+2+3+...+n)2higer power of x
limx01cos2x.3cos3x.......ncosnxx2=(1+2+3+...+n)2=n(n+1)4
According to the problem,
n(n+1)4=14n=7


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon