The limit of greatest integer function does not exist at those points where the function attains integral values.
Range of sin−1 function is [−π2,π2].
So, limx→a[sin−12x1+x2] doesn't exist at those values of x where sin−12x1+x2=−1,0,1
For sin−1(2x1+x2)=1
2x1+x2=sin1
⇒(sin1)x2−2x+sin1=0
⇒x=2±√4−4sin212sin1
Similarly, for sin−1(2x1+x2)=−1, we get two distinct values of x.
x=−2±√4−4sin212sin1
For sin−12x1+x2=0
2x1+x2=0
⇒x=0
Hence, total number of values of a is 5.