If limx→∞(x2+x+1x+1−ax−b)=4, then
Let f(x)=ax2+bx+c. Then, match the following. a. Sum of roots of f(x) = 01.–bab. Product of roots of f(x) = 02.cac. Roots of f(x) = 0 are real and distinct3.b2–4ac=0d. Roots of f(x) = 0 are real and identical.4.b2–4ac>0
consider the function f(x)=⎧⎪⎨⎪⎩a+bx,x<14, x=1b−ax, x>1 If limx→1 f(x)=f(1), then the values of a and b are