wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If limx((x3+x2)1/3(x3x2)1/3)=R then 3R=

Open in App
Solution

limx((x3+x2)1/3(x3x2)1/3)
We know that a3b3=(ab)(a2+ab+b2)
Let a=(x3+x2)1/3 and b=(x3x2)1/3

ab=a3b3a2+ab+b2
limx((x3+x2)1/3(x3x2)1/3)
=limxx3+x2x3+x2(x3+x2)2/3+(x3+x2)1/3(x3x2)1/3+(x3x2)2/3

=limx2x2x2(1+1x)2/3+x(1+1x)1/3x(11x)1/3+x2(11x)2/3

=limx2(1+1x)2/3+(1+1x)1/3(11x)1/3+(11x)2/3

=2(1+0)2/3+(1+0)1/3(10)1/3+(10)2/3
=23=R

3R=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon