limx→∞((x3+x2)1/3−(x3−x2)1/3)
We know that a3−b3=(a−b)(a2+ab+b2)
Let a=(x3+x2)1/3 and b=(x3−x2)1/3
a−b=a3−b3a2+ab+b2
⇒limx→∞((x3+x2)1/3−(x3−x2)1/3)
=limx→∞x3+x2−x3+x2(x3+x2)2/3+(x3+x2)1/3(x3−x2)1/3+(x3−x2)2/3
=limx→∞2x2x2(1+1x)2/3+x(1+1x)1/3x(1−1x)1/3+x2(1−1x)2/3
=limx→∞2(1+1x)2/3+(1+1x)1/3(1−1x)1/3+(1−1x)2/3
=2(1+0)2/3+(1+0)1/3(1−0)1/3+(1−0)2/3
=23=R
3R=2