Functions without Antiderivatives as Known Combination of Basic Functions
If lim x → 0x...
Question
If limx→0x(1+acosx)−bsinxx3=1 then the value of |a+b| is
Open in App
Solution
limx→0x+ax(1−x22!+x44!−x66!+...)−b(x−x33!+x55!−....)x3=1 limx→01+a(1−x22!+x44!−x66!+...)−b(1−x23!+x45!−....)x2=1 For limit to exist 1+a−b=0 And −a2!+b3!=1 ⇒a=−52,b=−32