We have,
limx→0(ax+bx+cx+dx4)1/x=4√abcd=8⇒√abcd=64
Now,
∣∣∣a+ibc+id−c+ida−ib∣∣∣=(a+ib)(a−ib)−(c+id)(−c+id)
=(a+ib)(a−ib)+(c+id)(c−id)
=a2+b2+c2+d2
We know, A.M≥G.M
⇒a2+b2+c2+d24≥4√a2b2c2d2
⇒a2+b2+c2+d2≥4⋅√abcd
⇒a2+b2+c2+d2≥256
Hence, the minimum value of ∣∣∣a+ibc+id−c+ida−ib∣∣∣ is equal to 256.