Given,limx→0aex+bcosx+ce−xe2x−2ex+1=4⟶(1)Whenx→0e2x−2ex+1→0∴forlimittoexistaex+bcosx+ce−x→0Putx=0,a+b+c=0⟶(2)
By L'Hospital Rule,differentiating
limx→0aex−bsinx−ce−x2e2x−2ex=4
As,2(e2x−ex)→0⇒aex−bsinx−ce−x→0
Putx=0,a−c=0⇒a=c⟶(3)Differentiatingagain
limx→0aex−bcosx+ce−x4e2x−2ex=4
Putx=0,a−b+c4−2=4a−b+c=8⟶(4)Solving(2),(3),(4)a+b+c=0a−b+c=8a=c
Adding(2),(4)⇒2(a+c)=84a=8a=2,c=2Substitutingin(2),b=−4∴a=2,b=−4,c=2