Consider the given function
limx→1(1+ax+bx2)cx−1=e3
We know that,
elogx=x
Then,
elog⎛⎜ ⎜ ⎜⎝limx→1(1+ax+bx2)cx−1⎞⎟ ⎟ ⎟⎠=e3
Comparing both side and we get,
log⎛⎜ ⎜ ⎜⎝limx→1(1+ax+bx2)cx−1⎞⎟ ⎟ ⎟⎠=3
limx→1log(1+ax+bx2)cx−1=3
limx→1(cx−1)log(1+ax+bx2)=3
limx→1clog(1+ax+bx2)x−1=3
Applying L’ Hospital rule and we get,
limx→1c(11+ax+bx2)(0+a+2bx)1−0=0
Taking limit and we get,
c(11+a×1+b(1)2)(0+a+2b×1)=0
ac+2bc=0
Hence, this is the answer.