If limx→1x+x2+x3⋯xn−nx−1=5050, then n equal
10
100
150
None of these
limx→1x+x2+x3⋯xn−nx−1=5050 limx→1(x−1)x−1+(x2−1)x−1+(x3−1)x−1⋯xn−1x−2=5050 ⇒1+2+3⋯n=5050[∵xn−anx−a=nan−1] ⇒n(n+1)2=5050 ⇒n(n+1)=10100 ⇒n(n+1)=100×101 on comparing : n=100