If limx→3xn−3nx−3=108, find the value of n.
limx→3xn−3nx−3=108
n(3)n−1=108
=[∵limx→axn−anx−a=nan−1]
n(3)n−1=2×2×3×3×3
=4(3)3
n(3)n−1=4(3)4−1
Comparing we get
n =4