If limx→02-cosxcos2xx+2x2=eα, then α=?
Step 1: Apply limit to the given expression.
limx→02-cosxcos2xx+2x2=2-cos0cos00+202=2-1120=1∞
Step 2: Apply rule to limx→02-cosxcos2xx+2x2
We know that if limx→0fx=0andlimx→0gx=∞, then limx→0fg=elimx→0f-1g
So,
limx→02-cosxcos2xx+2x2=elimx→02-cosxcos2x-1x+2x2 …… (1)
Step 3: Solve limx→02-cosxcos2x-1x+2x2
limx→02-cosxcos2x-1x+2x2=limx→01-cosxcos2xx+2x2=limx→01-cosxcos2x×1+cosxcos2x1+cosxcos2x×x+2x2=limx→01-cos2xcos2x×x+21+cosxcos2xx2=limx→01-cos2x1-2sin2x×x+21+cosxcos2xx2=limx→01-cos2x+2cos2xsin2x×x+21+cosxcos2xx2=limx→0sin2x+2cos2xsin2x×x+21+cosxcos2xx2=limx→0sin2x1+2cos2x×x+21+cosxcos2xx2=limx→0sin2xx2×1+2cos2x1+cosxcos2x×x+2=limx→01×1+2cos2x1+cosxcos2x×x+2;bylimx→0sinxx=1
By applying limit we get
1×1+2cos20×0+21+cos0cos0=1×3×21+1=3
Step 4: Find the value of α.
By substituting the value of limx→02-cosxcos2x-1x+2x2 in 1, we get
limx→02-cosxcos2xx+2x2=e3
That means eα=e3.
Therefore, α=3
If α is a reapeated root of ax2+bx+c=0, then limx→atan(ax2+bx+c)(x−α)2 is
limx→0{sin(α+β)x+sin(α−β)x+sin 2αx}cos2βx−cos2αx