wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If limx02-cosxcos2xx+2x2=eα, then α=?


Open in App
Solution

Step 1: Apply limit to the given expression.

limx02-cosxcos2xx+2x2=2-cos0cos00+202=2-1120=1

Step 2: Apply rule to limx02-cosxcos2xx+2x2

We know that if limx0fx=0andlimx0gx=, then limx0fg=elimx0f-1g

So,

limx02-cosxcos2xx+2x2=elimx02-cosxcos2x-1x+2x2 …… (1)

Step 3: Solve limx02-cosxcos2x-1x+2x2

limx02-cosxcos2x-1x+2x2=limx01-cosxcos2xx+2x2=limx01-cosxcos2x×1+cosxcos2x1+cosxcos2x×x+2x2=limx01-cos2xcos2x×x+21+cosxcos2xx2=limx01-cos2x1-2sin2x×x+21+cosxcos2xx2=limx01-cos2x+2cos2xsin2x×x+21+cosxcos2xx2=limx0sin2x+2cos2xsin2x×x+21+cosxcos2xx2=limx0sin2x1+2cos2x×x+21+cosxcos2xx2=limx0sin2xx2×1+2cos2x1+cosxcos2x×x+2=limx01×1+2cos2x1+cosxcos2x×x+2;bylimx0sinxx=1

By applying limit we get

1×1+2cos20×0+21+cos0cos0=1×3×21+1=3

Step 4: Find the value of α.

By substituting the value of limx02-cosxcos2x-1x+2x2 in 1, we get

limx02-cosxcos2xx+2x2=e3

That means eα=e3.

Therefore, α=3


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon